ZT Research
- Home
- Education
- Electrification of Clouds
- The Initiation and Growth of Lightning
- Positive and Negative Leaders Behave Differently
- Cloud Flashes
- Ground Flashes
- Upward Lightning from Tall Objects
- Upper Atmosphere Lightning
- The 5 Ways Lightning Can Injure or Kill You
- Revising What We Were Taught In School About Lightning…And What We Teach Going Forward
- Lightning for Storm Chasers and Photographers
- Sources
- UPLIGHTS
- Publications
- “Lightning Rod” Van
- About
Archive for category Aircraft-Triggered Lightning
What is it like to be struck by lightning while flying an airplane?
Posted by ZTResearch in Aircraft-Triggered Lightning on 12/21/2011
I had the incredible opportunity to fly the T-28 Storm Penetrating Aircraft that was funded for scientific research by the National Science Foundation and managed by the Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, in Rapid City, South Dakota. I was one of three pilots who flew it before it was retired and one of nine total pilots to have flown this one-of-a-kind aircraft. The aircraft was a 1949, T-28 Trojan highly modified to withstand hail up to 3 inches in diameter, severe turbulence, icing, and lightning. It had armor plating on the leading edge of the wings and tail and had a bullet proof, lexan and metal reinforced canopy. For over 30 years, the aircraft collected valuable data from inside thunderstorms and the analysis of these data helped to better understand thunderstorm theromodynamics, physics, and electrification as well as improve aviation safety.
Below are two pictures showing hail damage to non-reinforced portions of the aircraft. The non-armored wing tip (left image) would have to be hammered out after each season and the instrument sensors would add to their battle scars each year (the gold dome in the right image is normally a smooth bowl about 6 in across).
We typically flew the aircraft through the heart of severe storms around the -10 C level (between 17,000 – 21,000 ft MSL) which is the harshest environment for ice formation on aircraft surfaces. There was no deicing capability on the wings or tail, and occasionally, ice would build up on the wings to the point where the pilot could no longer hold altitude. We would have to descend below the freezing level and let the ice melt off before going back into the storm. Alternatively, hail would sometimes beat the ice off of the wings in a matter of seconds.
On a few occasions, the aircraft was flown through a storm that was producing a tornado. Being 5 km above ground meant that we were in the broader circulation (mesocyclone) so we did not (nor want to) encounter any tight circulations associated with tornadoes.
The aircraft would experience lightning strikes a few times each season, and the damage to the aircraft only involved a little metal being melted off the trailing edge of the wing flaps or tail at the two lightning attachment points. Mazur [1989] showed that most lightning strikes to aircraft are initiated by the aircraft when it enhances the local electric field due to its shape. Bipolar/bidirectional lightning leader development occurs at opposite ends of the aircraft and this development may result in a cloud flash or ground flash if one of the leaders connects with ground. On average, each airliner experiences one lightning flash each year. Current flows on the outside surface of the aircraft (typically aluminum) between the two attachment points. The highly conductive aluminum allows the current to flow without significant heating, unlike the air where a hot lightning leader plasma forms due to its lack of conductivity.
In 2003, I was flying the T-28 when it initiated a lightning flash that attached to the propeller and rudder. I had a standard definition video camera mounted on the dash that recorded the flash, and another video camera mounted on the wing recorded both the strike and my comments. Below is the video from those cameras.
The strike definitely caught my attention as you can tell from the audio. Inside the cockpit, it felt and sounded like someone slapped the canopy right next to my head. There was no problems with the aircraft after the strike and upon landing we easily found the two attachment points.
If you are interested in seeing what a typical T-28 research mission was like, you can watch the video below. Every time we flew into a storm, we would land with the reinforced conviction that a thunderstorm is no place for an airplane. Thankfully, the T-28 was like no other airplane in the world. As the chief pilot Charlie Summers frequently stated, “The airplane can get through the storm, you just have to stay with the airplane.” These were reassuring words every time I approached a storm and saw a wall of boiling clouds filling my windscreen.
Mazur, V. (1989), A physical model of lightning initiation on aircraft in thunderstorms, J. Geophys. Res., 94(D3), 3326–3340.
aircraft-triggered lightning, lightning, T-28 Storm Penetrating Aircraft
-
You are currently browsing the archives for the Aircraft-Triggered Lightning category.
Follow Blog via Email
Twitter
- Excellent capture!! twitter.com/KeithMinor15/s… 17 hours ago
- RT @Rainmaker1973: You can actually kind of 'suction' plasma with a Tesla coil and a syringe helped by a nail [source and full video: https… 2 days ago
- RT @AndrewElswickWX: Stars, Bolts, and Paradise. A gorgeous lightning strike last night taken from Myrtle Beach, SC. #SCwx #wx #ILMwx https… 2 days ago
- RT @PaulMSmithPhoto: Oklahoma sprites from the other night, making some of my favorite terrain in Ok look almost volcanic . Traced back to… 3 days ago
- RT @goesglm: Extreme lightning even for Florida standards, check out the @WeatherArchive feed for stats on these enormous #GLM flashes! ht… 3 days ago