Below is listing of sources that I have used in my publications and presentations as well as this blog.
Aircraft-Triggered Lightning
Fischer, B. D., P. W. Brown and J. A. Plumer (1985) Research in lightning swept stroke attachment patterns and flight conditions with the NASA F-106B airplane, paper presented at the International Aerospeace and Ground Conference Lightning and Static Electricity, Paris, France.
Laroche, Pl., V. Idone, A. Eybert-Berard, and L. Barret (1991) Observations of bidirectional leader development in a triggered lightning flash. NASA Conf. Publ. 3106, I, 35.
Mazur, V. (1989a), Triggered lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res., 94(D3), 3311-3325.
Attachment
Bazelyan, E. M., Yu. P. Raizer, N. L. Aleksandrov, and F. D’Alessandro (2009), Corona processes and lightning attachment: The effect of wind during thunderstorms, J. Atmos. Res., 94, 436-447, doi:10.1016/j.atmosres.2009.07.002
Becerra, M., V. Cooray, S. Soula, and S. Chauzy (2007), Effect of the space charge layer created by corona at ground level on the inception of upward lightning leaders from tall towers, J. Geophys. Res., 112, D12205, doi:10.1029/2006JD008308.
Becerra, M., and V. Cooray (2006), A simplified physical model to determine the lightning upward connecting leader inception, IEEE Trans. Power Delivery, 21(2), 897– 908.
Becerra, M., and V. Cooray (2006), Time dependent evaluation of the lightning upward connecting leader inception, J. Phys. D: Appl. Phys, 39, 4695– 4702.
Kitterman, C. G. (1981), Concurrent lightning flashes on two television transmission towers, J. Geophys. Res., 86, 5378-5380.
Mazur, V., L. H. Ruhnke, A. Bondiou-Clergerie, and P. Lalande (2000), Computer simulation of a downward negative stepped leader and its interaction with a ground structure, J. Geophys. Res., 105(D17), 22,361–22,369.
Saba, M. M. F., C. Schumann, T. A. Warner, J. H. Helsdon, R. E. Orville (2014), High-speed video and electric field observation of a negative upward leader connecting a downward positive leader in a positive cloud-to-ground flash, Electric Power Systems Research, 118, 89-92, doi:10.1016/j.epsr.2014.06.002.
Shindo, T., (2011) A calculation method of effective height of structures in lightning studies, IEEJ Trans. on Power & Energy, Vol.132-B, No.3, pp292-293, 2011.
Warner, T. A. (2010), Upward leader development from tall towers in response to downward stepped leaders, Proceedings of the 30th International Conference on Lightning Protection (ICLP), Sep 13-17, Cagliari, Italy.
Characteristics
Chen, M., Takagi, N., Watanabe, T., Wang, D., Kawasaki, Z.-I., Liu, X. (1999), Spatial and temporal properties of optical radiation produced by stepped leaders. J. Geophys. Res. 104, 27573–27584.
Cummins, K., M. M. F. Saba, E. P. Krider, T. A. Warner, C. Weidman, L. Z. S. Campos, S. A. Fleenor, A. C. V. Saraiva, and W. D. Scheftic (2008), A Multi-Camera High-Speed Video Study of Cloud-to-Ground Lightning in Southern Arizona – Preliminary Results in International Conference on Lightning Protection (ICLP), edited, ICLP, Uppsala, Sweden.
Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider and X.-M. Shao (2008), Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains, J. Atmos. Res., doi:10.1016/j.atmosres.2008.08.011 (2008)
Idone, V. P. (1992), The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr., 122, 23–28.
IEC 62305-SER Ed 1.0 (2006), Lightning Protection, International Electrotechnical Commission, Published 10/4/07, [http://www.iec.ch]
Mazur, V., P. R. Krehbiel, and X. -M. Shao (1995), Correlated high-speed video and interferometric observations of a cloud-to-ground lightning flash, J. Geophys. Res., 100, 25,731–25,753, doi:10.1029/95JD02364.
Orville, R.E., Idone, V.P., (1982), Lightning leader characteristics in the Thunderstorm Research International Program (TRIP). J. Geophys. Res. 87, 11177–11192.
Saba, M. M. F., K. L. Cummins, T. A. Warner, E. P. Krider, L. Z. S. Campos, M. G. Ballarotti, O. Pinto Jr., and S. A. Fleenor (2008), Positive leader characteristics from high-speed video observations, Geophys. Res. Lett., 35, L07802, doi:10.1029/2007GL033000.
Saba, M. M. F., L. Z. S. Campos, E. P. Krider and O. Pinto Jr. (2009), High-speed video observations of positive ground flashes produced by intracloud lightning, Geophys. Res. Lett., 36, L12811, doi:10.1029/2009GL038791.
Saba, M. M. F., W. Schulz, T. A. Warner, L. Z. S. Campos, C. Schumann, E. P. Krider, K. L. Cummins, and R. E. Orville (2010), High-speed video observations of positive lightning flashes to ground, J. Geophys. Res., 115, D24201, doi:10.1029/2010JD014330
Saba, M. M. F., W. Schulz, and L. Z. S. Campos (2010), M components or cloud-to-ground subsequent strokes? paper presented at the 21st International Lightning Detection Conference, 19 – 20 Apr, Orlando, Florida, USA.
Stolzenburg, M., T. C. Marshall, S. Karunarathne, N. Karunarathna, L. E. Vickers, T. A. Warner, R. E. Orville and H.-D. Betz (2013), Luminosity of initial breakdown in lightning, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50276.
Stolzenburg, M., T. C. Marshall, S. Karunarathne, N. Karunarathna, T. A.Warner, and R. E. Orville (2013), Stepped-to-dart leaders preceding lightning return strokes, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50706.
Warner, T. A., J. H. Helsdon Jr., and A. G. Detwiler (2003), Aircraft observations of a lightning channel in STEPS, Geophys. Res. Lett., 30(19), 1984, doi:10.1029/2003GL017334.
Weidman, C. D., and E. P. Krider (1978), The fine structure of lighting return stroke waveforms, J. Geophys. Res., 83, 6239–6247.
Weidman, C. D., and E. P. Krider (1979), The Radiation Field Wave Forms Produced by Intracloud Lightning Discharge Processes, J. Geophys. Res., 84(C6), 3159–3164.
Electrification and Charge Structure
Chauzy, S., and P. Raizonville (1982), Space charge layers created by coronae at ground level below thunderclouds: Measurements and modeling, J. Geophys. Res., 87(C4), 31431982.
Chauzy, S., and C. Renella (1985), Computed response of the space charge layer created by corona at ground level to external electric field variations beneath a thundercloud, J. Geophys. Res., 90(D4), 6051– 6057.
Chauzy, S., and S. Soula (1999), Contribution of the ground corona ions to the convective changing mechanism, Atmos. Res., 51, 279– 300.
Chauzy, S., S. Soula, and S. Despiau (1989), Ground corona and lightning, J. Geophys. Res., 94(D11), 13,115–13,119.
Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas (2003), Effects of charge and electrostatic potential on lightning propagation, J. Geophys. Res., 108(D9), 4298, doi:10.1029/2002JD002718.
Coleman, L. M., M. Stolzenburg, T. C. Marshall, and M. Stanley (2008), Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms, J. Geophys. Res., 113, D09208, doi:10.1029/2007JD009459.
Hamlin, T., E. Lay and X-M Shao (2014), Inverted polarity intra-cloud flashes in the Great Plains region of the United States, 15th International Conf. on Atmos. Electricity, 15 – 20 June, Norman, Oklahoma, USA.
Kitagawa, N. (1992), Charge distribution of winter thunderclouds, Res. Lett. Atmos. Electr., 12, 6147–6157.
Lang, T.J., L.J. Miller, M. Weisman, S.A. Rutledge, L.J. Barker, V.N. Bringi, V. Chandrasekar, A. Detwiler, N. Doesken, J. Helsdon, C. Knight, P. Krehbiel, W.A. Lyons, D. Macgorman, E. Rasmussen, W. Rison, W.D. Rust, and R.J. Thomas (2004), The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 1107–1125.
Marshall, T. C., W. D. Rust, W. P. Winn, and K. E. Gilbert (1989), Electrical structure in two thunderstorm anvil clouds, J. Geophys. Res., 94, 2171–2181, doi:10.1029/JD094iD02p02171.
Marshall, T. C., and W. D. Rust (1993), Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems, Bull. Am. Meteorol. Soc., 74, 2159–2170, doi:10.1175/1520-0477 (1993)074<2159:TTOVES>2.0.CO;2.
Marshall, T. C., M. Stolzenburg, and W. D. Rust (1996), Electric field measurements above mesoscale convective systems, J. Geophys. Res., 101(D3), 6979–6996, doi:10.1029/95JD03764.
Marshall, T. C., M. Stolzenburg, W. D. Rust, E. R. Williams, and R. Boldi (2001), Positive charge in the stratiform cloud of a mesoscale convective system, J. Geophys. Res., 106, 1157–1163.
Rust, W. D., and D. R. MacGorman (2002), Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, 10.1029/2001GL014303.
Rutledge, S. A., and W. A. Petersen (1994), Vertical radar reflectivity structure and cloud-to-ground lightning in the stratiform region of MCSs: Further evidence for in situ charging in the stratiform region, Mon. Weather Rev., 122, 1760–1776, doi:10.1175/1520-0493(1994)122<1760:VRRSAC>2.0.CO;2.
Shepherd, Tommy R., W. David Rust, Thomas C. Marshall, 1996: Electric Fields and Charges near 0°C in Stratiform Clouds. Mon. Wea. Rev., 124, 919–938. doi: http://dx.doi.org/10.1175/1520-0493(1996)124<0919:EFACNI>2.0.CO;2
Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull (1994), Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system, Mon. Weather Rev., 122, 1777–1797, doi:10.1175/1520-0493(1994)122<1777:HDOEAM>2.0.CO;2.
Stolzenburg, M., and T. C. Marshall (1998), Charged precipitation and electric field in two thunderstorms, J. Geophys. Res.,103(D16), 19,777–19,790, doi:10.1029/98JD01675.
Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall (1998), Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems, J. Geophys. Res., 103, 14,059–14,078, doi:10.1029/97JD03546.
Stolzenburg, M., W. D. Rust, and T. C. Marshall (1998), Electrical structure in thunderstorm convective regions 2. Isolated storms,J. Geophys. Res., 103(D12), 14,079–14,096, doi:10.1029/97JD03547.
Stolzenburg, M., W. D. Rust, and T. C. Marshall (1998), Electrical structure in thunderstorm convective regions 3. Synthesis, J. Geophys. Res., 103(D12), 14,097–14,108, doi:10.1029/97JD03545.
Stolzenburg, M., T. C. Marshall, and W. D. Rust (2001), Serial soundings of electric field through the mesoscale convective system, J. Geophys. Res., 106, 12,371–12,380, doi:10.1029/2001JD900074.
Stolzenburg, M., T. C. Marshall, W. D. Rust, and D. L. Bartels (2002), Two simultaneous charge structures in thunderstorm convection, J. Geophys. Res., 107(D18), 4352, doi:10.1029/2001JD000904.
Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf (2005), The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151-4177.
Ground Flashes – Bipolar
Mazur, V. (2017), On the nature of bipolar flashes that share the same channel to ground, J. Electrostatics, 90, 31-37.
Saba, M. M. F., C. Schumann, T. A. Warner, J. H. Helsdon Jr., W. Schulz, and R. E. Orville (2013), Bipolar cloud-to-ground lightning flash observations, J. Geophys. Res. Atmos., 118, 11,098–11,106, doi:10.1002/jgrd.50804.
Ground Flashes – Negative
Edens, H. E. (2011), Bolts from the Blue, Ph.D. dissertation, New Mexico Institute of Mining and Technology, Socorro, Mexico
Ground Flashes – Positive
Fuquay, M. D. (1982), Positive cloud-to-ground lightning in summer thunderstorms, J. Geophys. Res., 87, 7131–7140, doi:10.1029/JC087iC09p07131.
Kong, X., X. Qie, and Y. Zhao (2008), Characteristics of downward leader in a positive cloud-to-ground lightning flash observed by high-speed video camera and electric field changes, Geophys. Res. Lett., 35, L05816, doi:10.1029/2007GL032764.
Rust, W. D., D. R. MacGorman, and R. T. Arnold (1981), Positive cloud to ground lightning flashes in severe storms, Geophys. Res. Lett., 8, 791–794, doi:10.1029/GL008i007p00791.
Horizontally Extensive Lightning Related to Upward Lightning and TLEs
Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades (2005), Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system, J. Geophys. Res., 110, D03105, doi: 10.1029/2003JD004371.
Cummer, S. A., and W. A. Lyons (2004), Lightning charge moment changes in U.S. High Plains thunderstorms, Geophys. Res. Lett., 31, L05114, doi:10.1029/2003GL019043.
Cummer, S. A., and W. A. Lyons (2005), Implications of lightning charge moment changes for sprite initiation, J. Geophys. Res., 110, A04304, doi:10.1029/2004JA010812.
Lang, T. J., S. A. Rutledge, and K. C. Wiens (2004), Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system, Geophys. Res. Lett., 31, L10105, doi:10.1029/2004GL019823.
Lang, T. J., W. A. Lyons, S. A. Rutledge, J. D. Meyer, D. R. MacGorman, and S. A. Cummer (2010), Transient luminous events above two mesoscale convective systems: Storm structure and evolution, J. Geophys. Res., 115, A00E22, doi:10.1029/2009JA014500.
Lang, T. J., J. Li, W. A. Lyons, S. A. Cummer, S. A. Rutledge, and D. R. MacGorman (2011), Transient luminous events above two mesoscale convective systems: Charge moment change analysis, J. Geophys. Res., 116, A10306, doi:10.1029/2011JA016758.
Lang, T. J., S. A. Rutledge, W. A. Lyons, S. A. Cummer, D. R. MacGorman, T. Marshall and R. Blakeslee (2011), How the Structure of Mesoscale Precipitation Systems Affects their Prodcution of Transient Luminous Events, 14th International Conference on Atmospheric Electricity, 8 – 12 Aug, Rio de Janeiro, Brazil.
Lu, G., S. A. Cummer, J. Li, F. Han, R. J. Blakeslee, and H. J. Christian (2009), Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system, Geophys. Res. Lett., 36, L15805, doi:10.1029/2009GL038880.
Lyons, W. A. (1996), Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29,641–29,652, doi:10.1029/96JD01866.
Lyons, W. A., T. E. Nelson, E. R. Williams, S. A. Cummer, and M. A. Stanley (2003), Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems, Mon. Weather Rev., 131, 2417–2427, doi:10.1175/1520-0493 (2003)131<2417:COSPCL>2.0.CO;2.
Lyons, W. A. (2006), The meteorology of transient luminous events—An introduction and overview, in NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, edited by M. Fullekrug et al., pp. 19–56, Springer, New York.
Lyons, W. A., S. A. Cummer, M. A. Stanley, G. R. Huffines, K. C. Wiens, and T. E. Nelson (2008), Supercells and sprites, Bull. Am. Meteorol. Soc., 89, 1165–1174, doi:10.1175/2008BAMS2439.1.
Lyons, W. A., M. Stanley, J. D. Meyer, T. E. Nelson, S. A. Rutledge, T. J. Lang, and S. A. Cummer (2009), The meteorological and electrical structure of TLE-producing convective storms, in Lightning: Principles, Instruments and Applications, edited by H. D. Betz et al., pp. 389–417, doi:10.1007/978-1-4020-9079-0_17, Springer, New York.
Lyons, W. A., T.E. Nelson, T.A. Warner, T.J. Lang, K. Cummins, M. Quick, W. Rison, P. Krehbiel, S.A. Cummer, J. Myers, T. Samaras, P. Samaras, C. Young (2014), Meteorological Aspects of Two Modes of Lightning Triggered Upward Lightning (LTUL) Events in Sprite-Producing MCSs , paper presented at the 23nd International Lightning Detection Conference, Mar 18 – 19, Tucson, Arizona.
Rutledge, S. A., C. Lu, and D. R. MacGorman (1990), Positive cloud-to-ground lightning in mesoscale convective systems, J. Atmos. Sci., 47, 2085–2100, doi:10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2.
van der Velde, J. Montanya, S. Soula, N. Pineda and J. Mlynarczyk (2014), Bidirectional development of sprite-producing lightning flashes mapped by the Ebro Lightning Mapping Array, 15th International Conf. on Atmos. Electricity, 15 – 20 June, Norman, Oklahoma, USA.
Williams, E. R., The positive charge reservoir for sprite-producing lightning (1998), J. Atmos. Sol. Terr. Phys., 60, 689-692.
Williams, E. R. (2001), Sprites, elves and glow discharge tubes, Phys. Today, 54, 41–47, doi:10.1063/1.1428435.
Williams, E. R., and Y. Yair (2006), The microphysical and electrical properties of sprite-producing thunderstorms, in NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, edited by M. Fullekrug et al., pp. 57–83, Springer, New York.
Interferometry
Dong, W., X. Liu, Y. Yu, and Y. Zhang (2001), Broadband interferometer observations of triggered lightning. Chin. Sci Bull., 46(18), 1561-1565, doi:1-.1007/BF02900582.
Shao, X. M., D. N. Holden, and C. T. Rhodes (1996), Broadband radio interferometry for lightning observations, Geophys. Res. Lett., 23, 1917-1920.
Shao, X. M., P.R. Krehbiel, Thomas, R. J., and W. Rison (1995), Radio interferometric observations of cloud-to-ground lightning phenomena in Florida, J. Geophys. Res., 100, 2749-2783.
Shao, X., C. T. Rhodes, and D. N. Holden (1999), RF radiation observations of positive cloud-to-ground flashes, J. Geophys. Res., 104(D8), 9601– 9608.
Lightning Location Systems
Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer (1998), A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network, J. Geophys. Res., 103, 9035-9044.
Cummins, K. L., and M. J. Murphy (2009), An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN, IEEE Trans. Electromag. Compat., 51(3), 499-518.
Diendorfer, G., M. Mair, W. Schulz, and W. Hadrian (2000), Lightning current measurements in Austria – Experimental Setup and First Results, 25th International Conference on Lightning Protection (ICLP), Rhodes, Greece.
Diendorfer, G., W. Schulz, and H. Pichler (2010), Zero-crossing time and pulse width of radiated fields from lightning to elevated objects, 4th International Conf. on Lightning Physics and Effects, Salvador, Brazil.
Schulz, W., K. Cummins, G. Diendorfer, and M. Dorninger (2005), Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system, J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.
Schulz, W., B. Lackenbauer, H. Pichler, and G. Diendorfer (2005), LLS Data and Correlated Continuous E-Field Measurements, International Symposium On Lightning Protection, Sao Paulo, Brazil, Nov 21-25.
Schulz, W., and M. M. F. Saba (2009), First results of correlated lightning video images and electric field measurements in Austria, paper presented at X SIPDA International Symposium on Lightning Protection, Curitiba, Brazil.
Mapping
Edens, H. E., K. B. Eack, E. M. Eastvedt, J. J. Trueblood, W. P. Winn, P. R. Krehbiel, G. D. Aulich, S. J. Hunyady, W. C. Murray, W. Rison, S. A. Behnke, and R. J. Thomas (2012), VHF lightning mapping observations of a triggered lightning flash, Geophys. Res. Lett., 39, L19807, doi:10.1029/2012GL053666.
Krehbiel, P. R.., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin and M. Davis (2000), GPS-based mapping system reveals lightning inside storms, Eos, Trans. Am. Geophys. Union, 81, 21.
Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, (2000), Lightning mapping observations in central Oklahoma, Eos Trans. AGU, 81, 21-25.
Maier, L., C. Lennon, T. Britt and S. Schaefer (1995), LDAR system performance and analysis, in Proceedings of the International Conference on Cloud Physics, Amer. Meteor. Soc., Boston, Mass., Dallas, Tex., Jan 1995.
Mazur, V., E. Williams, R. Boldi, L. Maier, and D. E. Proctor (1997), Initial comparison of lightning mapping with operational Time-Of-Arrival Interferometric systems, J. Geophys. Res., 102, 11,071-11,085.
Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico, Geophys. Res. Lett., 26, 3573-3576.
Thomas, R. J., P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown (2001), Observations of VHF Source Powers Radiated by Lightning, Geophys. Res. Lett., 28(1), 143–146.
Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin (2004), Accuracy of the Lightning Mapping Array, J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.
Physics
Berger, K. (1977), The Earth flash, Lightning vol. 1, edited by R. H. Golde, Elsevier, New York.
Berger, K., et al. (1975), Parameters of lightning flashes, Electra, 41, 23– 37.
Berger, K., R. B. Anderson, and H. Knoninger (1975), Parameters of lightning flashes, Electra, 41, 23– 37.
Dwyer, J. R., and M. A. Uman (2013), The physics of lightning, Physics Reports, https://doi.org/10.1016/j.physrep.2013.09.004
Kasemir, H., (1960), A contribution to the electrostatic theory of a lightning discharge, J. Geophys. Res., 65(7), 1873-1878, doi:10.1029/JZ065i007p01873.
Krehbiel, P. R. (1981), An analysis of the electric field change produced by lightning, Ph. D. dissertation, Univ. of Manchester Inst. of Sci. and Technol., Manschester, U. K.
Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nature Geoscience, 1(4), 233-237, doi:10.1038/ngeo162
MacGorman, D. R., and W. D. Rust (1998) The Electrical Nature of Storms. Oxford University Press, Oxford, N.Y., 1998.
Marshall, T., W. Schulz, N. Karunarathna, S. Karunarathne, M. Stolzenburg, C. Vergeiner, and T. Warner (2014), On the percentage of lightning flashes that begin with initial breakdown pulses, J. Geophys. Res. Atmos., 119, 445–460, doi:10.1002/2013JD020854.
Mazur, V. (1982), Associated lightning discharges, Geophys. Res. Lett., 9(11), 1227–1230, doi:10.1029/GL009i011p01227.
Mazur, V. (1989), Triggered lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res. 94 3311-3325.
Mazur, V. (1989), A physical model of lightning initiation on aircraft in thunderstorms, J. Geophys. Res., 94(D3), 3326–3340.
Mazur, V., and L. H. Ruhnke (1993), Common physical processes in natural and artificially triggered lightning, J. Geophys. Res., 98 12913-12930.
Mazur, V. and L. H. Ruhnke (1998), Model of electric charges in thunderstorms and associated lightning, J. Geophys. Res., 100, 23299-23308.
Mazur, V. (2002), Physical processes during development of lightning flashes, C.R. Physique, 3, 1393-1409.
Mazur, V., L. H. Ruhnke, T. A. Warner, and R. E. Orville (2011), Discovering the Nature of Recoil Leaders, paper presented at the 14th International Conference on Atmospheric Electricity, August 07-12, 2011, Rio de Janeiro, Brazil
Mazur, V., L. H. Ruhnke, T. A. Warner, and R. E. Orville (2013). Recoil leader formation and development, J. Electrostatics, 71(4), 763-768.
Mazur, V., and L. H. Ruhnke (2014), The physical process of current cutoff in lightning leaders, J. Geophys. Res. 119, 2796-2810.
Mazur, V. (2016), The physical concept of recoil leader formation, J. Electrostatics, 82, 79-87.
Mazur, V. (2016), Principles of Lightning Physics, IOP Publishing, doi: 10.1088/978-0-7503-1152-6
Montanyà, J., O. van der Velde and E. R. Williams (2015) The start of lightning: Evidence of bidirectional lightning initiation, Nature, Scientific Reports, 5:15180, doi: 10.1038/srep15180.
Ogawa, T., and M. Brook (1964), The Mechanism of the Intracloud Lightning Discharge, J. Geophys. Res., 69(24), 5141–5150.
Rakov, V. A., D. E. Crawford, K. J. Rambo, G. H. Schnetzer, M. A. Uman, and R. Thottappillil (2001), M-component mode of charge transfer to ground in lightning discharges, J. Geophys. Res., 106, 22,817–22,831.
Rakov, V. A., and M. A. Uman (2003), Lightning: Physics and Effects, Cambridge Univ. Press, New York.
Rison, W., P. R. Krehbiel, M. G. Stock, H. E. Edens, X-M Shao, R. J. Thomas, M. A. Stanley, and Y. Zhang (2016), Observations of narrow bipolar events reveal how lighting is initiated in thunderstorms, Nature Communications, doi: 10.1038.ncomms10721
Schonland, B.F.J., (1938), Progressive lightning. Part 4. The discharge mechanisms. Proc. R. Soc. A164, 132–150.
Schonland, B.F.J., D.B. Hodges, and H. Collens, (1938), Progressive lightning. Part 5. A comparison of photographic and electrical studies of the discharge process. Proc. R. Soc. A166, 56–75.
Schonland, B.F.J., D.J. Malan, and H.Collens, (1938), Progressive lightning, part 6. Proc. R. Soc. A168, 455–469.
Schonland, B.F.J., (1956), The lightning discharge. Handbuch der physic, vol.22. Springer-Verlag, Berlin, pp. 576–628.
Shao, X. M. and P. R. Krehbiel, The spatial and temporal development of intracloud lightning (1996), J. Geophys. Res., 101, 26,641-26,668.
Thottappillil, R., V. A. Rakov, and M. A. Uman (1990), K and M changes in close lightning ground flashes in Florida, J. Geophys. Res., 95(D11), 18,631–18,640.
van der Velde, O. A., and J. Montanya (2013), Asymmetries in bidirectional leader development of lightning flashes, J. Geophys. Res. Atmos., 118, 13,504–13,519, doi:10.1002/2013JD020257.
Willett, J. C., D. M. Le Vine, and V. P. Idone (2008), Lightning return stroke current waveforms aloft from measured field change, current, and channel geometry, J. Geophys. Res., 113, D07305, doi:10.1029/2006JD008116.
Protection
IEC/TR 61400-24 Ed 1.0 (2002), Wind Turbine Generator Systems – Part 24: Lightning Protection, International Electrotechnical Commission, Published 7/11/02, [http://www.iec.ch]
NFPA-780 (2008), Installation of Lightning Protection Systems, National Fire Protection Association.
Rocket-Triggered Lightning
Biagi, C. J., D. M. Jordan, M. A. Uman, J. D. Hill, W. H. Beasley, and J. Howard (2009), High-speed video observations of rocket-and-wire initiated lightning, Geophys. Res. Lett., 36, L15801, doi:10.1029/2009GL038525.
Biagi, C. J., M. A. Uman, J. D. Hill, and D. M. Jordan (2011), Observations of the initial, upward-propagating, positive leader steps in a rocket-and-wire triggered lightning discharge, Geophys. Res. Lett., 38, L24809, doi:10.1029/2011GL049944.
Miki, M., V. A. Rakov, T. Shindo, G. Diendorfer, M. Mair, F. Heidler, W. Zischank, M. A. Uman, R. Thottappillil, and D. Wang (2005), Initial stage in lightning initiated from tall objects and in rocket-triggered lightning, J. Geophys. Res., 110, D02109, doi:10.1029/2003JD004474.
Ushio, T., Z. Kawasaki, Y. Ohta, and K. Matsuura (1997), Broadband interferometric measurement of rocket triggered lightning in Japan, Geophys. Res. Lett., 24(22), 2769-2772, doi:10.1029/97GL02953.
Vonnegut, B. (1984), Reduction of Thunderstorm Electric Field Intensity Produced by Corona From a Nearby Object, J. Geophys. Res. 89, 1468-1470.
Wang, D., V. A. Rakov, M. A. Uman, M. I. Fernandez, K. J. Rambo, G. H. Schnetzer, and R. J. Fisher (1999), Characterization of the initial stage of negative rocket-triggered lightning, J. Geophys. Res., 104, 4213–4222.
Willet, J. C., D. A. Davis, and P. Laroche (1999), An experimental study of positive leaders initiating rocket-triggered lightning, Atmos. Res., 51, 189– 219.
Yoshida, S., C. J. Biagi, V. A. Rakov, J. D. Hill, M. V. Stapleton, D. M. Jordan, M. A. Uman, T. Morimoto, T. Ushio, and Z. –I. Kawasaki (2010), Three-dimensional imaging of upward positive leaders in triggered lightning using VHF broadband digital interferometers, Geophys. Res. Lett., 37, L05805, doi:10.1029/2009GL042065
Yoshida, S., C. J. Biagi, V. A. Rakov, J. D. Hill, M. V. Stapleton, D. M. Jordan, M. A. Uman, T. Morimoto, T. Ushio, and Z. –I. Kawasaki (2012), The initial stage processes of rocket-wire triggered lightning as observed by VHF interferometry, J. Geophys. Res., 117, D09119, doi:10.1029/2012JD017657.
Thunderstorm Morphology
Changnon, S. A. (2001), Development and Analysis of Data Bases for Assessing Long-Term Fluctuations in Thunderstorms in the United States, Final Report. Award Number NA96GP0455, CRR-49, Figure 5.
Duda, J. D. and W. A. Gallus (2010), Spring and Summer Midwestern Severe Weather Reports in Supercells Compared to Other Morphologies, Wea. Forecasting, 25, 190–206. doi: http://dx.doi.org/10.1175/2009WAF2222338.1
Houze, R. A., Jr., B. F. Smull, and P. Dodge (1990), Mesoscale organization of springtime rainstorms in Oklahoma, Mon. Weather Rev., 118, 613–654, doi:10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.
Houze, R. A. Jr., (1997), Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?, Bull. Amer. Meteor. Soc., 78, 2179-2196, doi: http://dx.doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO:2
Lang, T. J., and S. A. Rutledge (2008), Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000, J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.
Spectra
Orville, R. E., A high-speed time-resolved spectroscopic study of the lightning return stroke: Part i. a qualitative analysis, Journal of the Atmospheric Sciences, 25, 827–838, 1968a.
Orville, R. E., A high-speed time-resolved spectroscopic study of the lightning return stroke: Part ii. a quantitative analysis., Journal of Atmospheric Sciences, 25, 839–851, 1968b.
Orville, R. E., A high-speed time-resolved spectroscopic study of the lightning return stroke. part iii. a time-dependent model., Journal of Atmospheric Sciences, 25, 852–856, 1968c.
Prueitt, M. L., The excitation temperature of lightning, Journal of Geophysical Research, 68, 803–811, 1963.
Salanave, L. E., The optical spectrum of lightning, Science, 134, 1395–1399, 1961.
Uman, M. A., Quantitative lightning spectroscopy, Spectrum, IEEE, 3, 102–110, 1966.
Uman, M. A., and R. E. Orville, The opacity of lightning, Journal of Geophysical Research, 70, 5491–5497,1965.
Walker, T. D. and H. J. Christian (2014), Novel Observations in Lightning Spectroscopy, 15th International Conf. on Atmos. Electricity, 15 – 20 June, Norman, Oklahoma, USA.
Warner, T. A., R. E. Orville, J. L. Marshall, and K. Huggins (2011), Spectral (600 – 1050 nm) time exposures (99.6 ms) of a lightning stepped leader, J. Geophys. Res., 116, D12210, doi:10.1029/2011JD015663.
Upper Atmosphere Lightning
Armstrong, R. A., and W.A. Lyons (2000), Satellite and Ground-Based Data Exploitation for Nudet Discrimination Characterizing Atmospheric Electrodynamic Emissions from Lightning, Sprites, Jets and Elves, Final Report, Contract # DE-AC04-98AL79469, Department of Energy, DoE/Albuquerque Operations Office
da Silva, C. L., and V. P. Pasko (2014), On the Upward Propagation of Gigantic Jet Leaders, 15th International Conf. on Atmos. Electricity, 15-20 June, Norman, Okalhoma, USA.
Upward Lightning
Aleksandrov, N. L., E. M. Bazelyan, R. B. Carpenter, M. M. Drabkin, and Yu. P. Raizer (2001), The effect of coronae on leader inception and development under thunderstorm conditions and in long air gaps, J. Phys. D: Appl. Phys, 34, 3256–3266.
Aleksandrov, N. L., E. M. Bazelyan, M. M. Drabkin, and R. B. Carpenter (2002), Corona discharge at the tip of a tall object in the electric field of a thundercloud, Plasma Phys. Rep., 28, 1032– 1045.
Aleksandrov, N. L., Bazelyan, and Y. Raizer (2005), The effect of a corona discharge on a lightning attachment, Plasma Phys. Rep., 31, 75– 91.
Asakawa, A., K. Miyake, S. Yokoyama, T. Shindo, T. Yokota, and T. Sakai (1997), Two types of lightning discharges to a high stack on the coast of the Sea of Japan in winter, IEEE Trans. Power Delivery, 12, 1222–1231.
Berger, K. (1967), Novel observations on lightning discharges: Results of research on Mount San Salvatore, J. Franklin Inst., 283, 478– 525.
Berger, K., and E. Vogelsanger (1966), Photographische Blitzuntersuchungen der Jahre 1955–1965 auf dem Monte San Salvatore. Bull. Schweiz. Elektrotech. Ver. 57, 599–620.
Berger, K., and E. Vogelsanger (1968), New results of lightning observations. In Proc. Int. Conf. on Large High Tension Electric Systems (CIGRE) Paris, France, paper 33-03, 11 pp.
Berger, K., and E. Vogelsanger (1969), New results of lightning observations, in Planeteary Electrodynamics, edited by S. C. Coroniti and J. Hughes, pp. 498– 510, Gordon and Breach, New York.
Brook, M., M. Nakano, and P. Krehbiel (1982), The electrical structure of the Hokuriku winter thunderstorm, J. Geophys. Res., 87, 1207– 1215.
Chang, J. S., Beuthe, T. G., Seto, L., Duft, A., Hayashi, N., Chisholm, W. and Janischevskyj, W., An investigation of the possible relationship between thundercloud electric fields and the lightning parameters for tall structures, J. Geophys. Res., 94, 122, 197-13, 205, 1989.
Cummins, K. L., M. Quick, J. Myers, W. Rison, T. A. Warner, M. M. F. Saba, C. Schumann, W. Lyons, G. McHarg, J. Engle, T. Samaras, P. Samaras, C. Young, A. Nag, J. Cramer, T. Turner, S. A. Cummer, and G. Lu (2014), Overview of the Kansas Windfarm 2013 Field Program, paper presented at the 15th International Conference on Atmospheric Electricity, 2014, Norman.
Diendorfer, G., and W. Schulz (1998), Lightning Incidence to Elevated Objects on Mountains, paper presented at the 24th Int. Conf. on Lightning Protection, Birmingham, UK, Sep 1998.
Diendorfer, G., W. Schulz, and M. Mair (2000), Evaluation of a LLS based on lightning strikes to an instrumented tower, International Lightning Detection Conf., Tucson, Arizona, USA.
Diendorfer, G., M. Viehberger, M. Mair, and W. Schulz (2003), An attempt to determine currents in lightning channels branches from optical data of a high speed video system, paper presented at International Conference on Lightning and Static Electricity, R. Aeronaut. Soc., Blackpool, U. K.
Diendorfer, G., H. Pichler and M. Mair (2005) Characteristics of positive upward lightning measured on an instrumented tower, Geophys. Res. Abstracts, Vol. 7, 10175.
Diendorfer, G., H. Pichler, and M. Mair (2009), Some Parameters of Negative Upward-Initiated Lightning to the Gaisberg Tower (2000-2007), IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 443–452.
Eriksson, A. J. (1978), Lightning and tall structures, Trans. S. Afr. IEE 69, 2-16.
Flache, D., V. A. Rakov, F. Heidler, W. Zischank, and R. Thottappillil (2008), Initial-stage pulses in upward lightning: Leader/return stroke versus M-component mode of charge transfer to ground, Geophys. Res. Lett., 35, L13812, doi:10.1029/2008GL034148.
Fuchs, F., E. U. Landers, R. Schmid, and J. Wiesinger (1998), Lightning current and magnetic field parameters caused by lightning strikes to tall structures relating to interference of electronic systems, IEEE Trans. Electromagn. Compat., 40, 444– 451.
Golde, R. H. (1978), Lightning and tall structures, Proc. IEEE, 125(4), 347– 351.
Gorin, B. N., G. S. Sakharova, V. V. Tikhomirov, and A. V. Shkilev (1975), Results of studies of lightning strikes to the Ostankino TV tower, Tr. ENIN 43, pp. 63–77, Krzhanovsky Power Eng. Inst., Moscow.
Hagenguth, J. H., and J. G. Anderson (1952), Lightning to the Empire State Building, part III, Trans. Am. Inst. Electr. Eng., Part 3, 71, 641– 649.
Heidler, F. (2002) Lightning current measurements at the Peissenberg telecommunication tower, Proc. International Conference on Grounding and Earthing, GROUND 2002, 117-122, November 4-7, Rio de Janeiro, Brazil.
Heidler, F., M. Manhardt, and K. Stimper (2013), The Slow-Varying Electric Field of Upward Negative Lightning Initiated by the Peissenberg Tower, Germany, IEEE Transactions on Electromagnetic Compatibility, 55, 2, p 353-361.
Heidler, F., M. Manhardt, and K. Stimper (2014), Self-Initiated and Other-Triggered Positive Upward Lightning Measured at the Peissenberg Tower, Germany, paper presented at the 2014 International Conference on Lightning Protection (ICLP), 13 – 17 Oct, Shanghai, China.
Hussein, A. M., W. Janischewskyj, J.–S. Chang, V. Shostak, W. A. Chisholm, P. Dzurevych, and Z.-I. Kawasaki (1995), Simultaneous measurement of lightning parameters for strokes to the Toronto Canadian National tower, J. Geophys. Res. 100: 8853-61.
Hussein, A. M., 2011: Tall-structure lightning. Proceedings of the 3rd International Symposium on Winter Lightning, Jun 13-15, Tokyo, Japan.
Hussein, A. M., M. Milewski, and W. Janischewskyj, (2011) Characteristics of CN Tower lightning flashes based on high-speed imaging system records, Proceedings of the 3rd International Symposium on Winter Lightning, Jun 13-15, Tokyo, Japan.
Jiang, R., X. Qie, Z. Wu, D. Wang, M. Liu, G. Lu and D. Liu (2014), Characteristics of upward lightning from a 325-m-tall meteorology tower, J. Atmos. Res., 149, pp. 111-119, doi:10.1016/j.amtosres.2014.06.007
Lu, W., D. Wang, Y. Zhang, and N. Takagi (2009), Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., 36, L05801, doi:10.1029/2008GL036598.
Rakov, V. A., and M. A. Uman (2003), Winter lightning in Japan, in Lightning: Physics and Effects, chap. 8, pp. 308– 320, Cambridge Univ. Press, Cambridge, U. K.
Mazur, V., X. Shao, and P. R. Krehbiel (1998), ‘‘Spider’’ lightning in intracloud and positive cloud-to-ground, J. Geophys. Res, 103(D16), 19,811 –19,822.
Mazur, V., and L. H. Ruhnke (2011). Physical processes during development of upward leaders from tall structures, J. Electrostatics, 69, 97-110.
McEachron, K. B. (1939) Lightning to the Empire State Building, J. Franklin Inst., 227, 149–217.
McEachron, K. B. (1941), Lightning to the Empire State Building II, Electr. Eng. Am. Inst. Electr. Eng., 60, 885–889.
Miki, M., T. Shindo, V. A. Rakov, M. A. Uman, G. Diendorfer, M. Mair, F. Heidler, W. Zischank, R. Thottappillil, and D. Wang (2006), Characterization of current pulses superimposed on the continuous current in upward lightning initiated from tall objects and in rocket-triggered lightning, paper presented at 28th International Conference on Lightning Protection, Inst. of Electr. Installation Eng. of Jpn., Kanazawa, Japan.
Miyake, K., T. Suzuki, and K. Shinjou (1992), Characteristics of winter lightning current on Japan Sea coast, IEEE Trans. Power Delivery, 7, 1450– 1456.
Miyake, K., T. Suzuki, M. Takashima, M. Takuma, and T. Tada (1990), Winter lightning on Japan Sea coast: Lightning striking frequency to tall structures, IEEE Trans. Power Delivery, 5, 1370–1376.
Orville, R. E., and K. Berger (1973), An Unusual Lightning Flash Initiated by an Upward-Propagating Leader, J. Geophys. Res., 78(21), 4520–4525.
Pierce, E. T. (1971), Triggered lightning and some unsuspected lighting hazards, Stanford Research Institute, Menlo Park, CA, pp. 20.
Rakov, V. A., and M. A. Uman (2003), Upward lightning initiated by ground-based objects, in Lightning: Physics and Effects, chap. 6, pp. 176– 182, Cambridge Univ. Press, Cambridge, U. K.
Rison, W., R. Thomas, P. Krehbiel, D. Rodeheffer, K. Cummins, M. Quick, J. Myers, T. Warner, M. Saba, C. Schumann, W. Lyons, T. Samaras, P. Samaras, C. Young, S. Cummer, G. Lu (2014), LMA and Slow Antenna Observations of Naturally Induced Upward Positive Leaders from Wind Turbines, paper presented at the 23nd International Lightning Detection Conference, Mar 18 – 19, Tucson, Arizona.
Saba, M. M. F., J. Alves, C. Schumann, D. R. Campos and T. A. Warner (2012), Upward Lighting in Brazil. Paper presented at the 22nd International Lightning Detection Conference, Apr 2 – 5, Boulder, Colorado, USA
Saba, M. M. F., C. Schumann, T. A. Warner, M. A. S. Ferro, A. R. de Paiva, J. Helsdon Jr, and R. E. Orville (2016), Upward lightning flashes characteristics from high-speed videos, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025137.
Schumann, C., M. M. F. Saba, A. R. de Paiva, R. Jaques M. A. da Silva Ferro, T. A. Warner, (2014), High-Speed Observation of Upward Lightning Flashes in Brazil, paper presented at the 23nd International Lightning Detection Conference, Mar 18 – 19, Tucson, Arizona.
Schumann, C., M. M. F. Saba, M. A. da Silva Ferro, T. A. Warner, A. R. de Paiva, and R. Jaques (2014), Mechanism of Triggering Upward Lightning from Towers in São Paulo, Brazil, paper presented at the International Conference on Grounding and Earthing and 6th International Conference on Lightning Physics and Effects, Manaus, Brazil, May 2014.
Schumann, C., M. M. F. Saba, A. R. de Paiva, R. Jaques, M. A. da Silva Ferro, T. A. Warner, and J. H. Helsdon, Jr. (2014), Triggered Upward Flashes, paper presented at the 2014 International Conference on Lightning Protection (ICLP), Oct 13 – 17, Shanghai, China.
Schumann, C., M. M. F. Saba, A. R. de Paiva, R. Jaques, W. Schulz, G. Diendorfer, M. A. da Silva Ferro, and T. A. Warner (2015), Analysis of terrain and atmospheric conditions for upward flashes in Sao Paulo-Brazil, paper presented at XIII International Symposium on Lightning Protection (SIPDA), Balneario Camboriu, Brazil, 28 Sep – 2 Oct.
Schumann, C., M. M. F. Saba, M. A. da Silva Ferro, T. A. Warner, A. R. de Paiva, C. Morales, R. Jaques and J. H. Helsdon Jr. (2015), Upward Lightning Flashes in Brazil and USA: An Analysis of Electric Field Meter Data, paper presented at 2015 Asia-Pacific International Conf. on Lightning (APL), Nagoya, Japan, June 23 – 27.
Smorgonskiy, A., A. Tajalli, F. Rachidi, M. Rubinstein, G. Diendorfer, H. Pichler (2015), An analysis of the initiation of upward flashes from tall towers with particular reference to Gaisberg and Säntis Towers, J. Atmos and Solar-Terr. Phys. , DOI: 10.1016/j.jastp.2015.06.016
Stanley, M.A. and M.J. Heavner (2003), Tall structure lightning induced by sprite-producing discharges, paper presented at the 12th Int. Conf. on Atmos. Elec., June 9 – 13, Paris, France.
Suzuki, T. (1992), Long term observation of winter lightning on Japan Sea coast, Res. Lett. Atmos. Electr., 12, 53– 56.
Takagi, N., D. Wang, and T. Watanabe (2006), A study of upward positive leaders based on simultaneous observation of E-fields and high-speed images, Trans. Inst. Electr. Eng. Jpn., 126, 256– 259.
Wang, D., N. Takagi, T. Watanabe, H. Sakurano, and M. Hashimoto (2008), Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., 35, L02803, doi:10.1029/2007GL032136.
Wang D. and N. Takagi, (2010), Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan, Proceedings of the 3rd International Symposium on Winter Lightning, Jun 13-15, Tokyo, Japan.
Wang D., and N. Takagi, Y. Takaki (2010), A comparison between self-triggered and other-triggered upward lightning discharges, Proceedings of the 30th International Conference on Lightning Protection, Sep 13-17, Cagliari, Italy.
Wang D., and N. Takagi (2012), Three Unusual Upward Positive Lightning Triggered by Other Nearby Lightning Discharge Activity, paper presented at the 22nd International Lightning Detection Conference, 2 – 3 April, Broomfield, Colorado, USA
Warner, T. A., V. Mazur, and L. Ruhnke (2008), High-Speed Video Observations of Upward Leaders from Tall Towers, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract AE21A-08.
Warner, T. A., (2010), Observations of simultaneous multiple upward leaders from tall structures, Proceedings of the 30th International Conference on Lightning Protection (ICLP), Sep 13-17, Cagliari, Italy.
Warner, T. A., K. L. Cummins, and R. E. Orville (2011), Comparison of upward lightning observations from towers in Rapid City, South Dakota with National Lightning Detection Network data – preliminary findings. Proceedings of the 3rd International Symposium on Winter Lightning, Jun 13-15, Tokyo, Japan.
Warner, T. A., K. L. Cummins, and R. E. Orville (2011), Comparison of upward lightning observations from towers in Rapid City, South Dakota with National Lightning Detection Network data. Proceedings of the 3rd International Symposium on Winter Lightning, Jun 13-15, Tokyo, Japan.
Warner, T. A., M. M. F. Saba, S. Rudge, M. Bunkers, W. A. Lyons, and R. E. Orville, (2012), Lightning-triggered upward lightning from towers in Rapid City, South Dakota, paper presented at the 2012 International Lightning Detection Conference, Apr 2 – 3, Boulder, Colorado.
Warner, T. A. (2012), Observations of simultaneous upward lightning leaders from multiple tall structures, Atmos. Res., 117, 45–54, doi:10.1016/ j.atmosres.2011.07.004.
Warner, T. A., M. M. F. Saba, and R. E. Orville (2012), Characteristics of Upward Leaders from Tall Towers, paper presented at the 22nd International Lightning Detection Conference, Apr 2 – 3, Boulder, Colorado.
Warner, T. A., K. L. Cummins, and R. E. Orville (2012), Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004–2010, J. Geophys. Res., 117, D19109, doi:10.1029/2012JD018346.
Warner, T. A., J. H. Helsdon Jr., M. J. Bunkers, M. M. F. Saba, and R. E. Orville (2013), UPLIGHTS – Upward Lightning Triggering Study, Bull. Amer. Meteor. Soc., 94(5), 631-635.
Warner, T. A., T. J. Lang, and W. A. Lyons (2014), Synoptic scale outbreak of self-initiated upward lightning (SIUL) from tall structures during the central U.S. blizzard of 1–2 February 2011,
J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021691.
Yuan, S., R. Jiang, X. Qie, D. Wang, Z. Sun and M. Liu, (2017), Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions, in press, doi: 10.1002/2017JD027198
Zhou, H., G. Diendorfer, R. Thottappillil, H. Pichler, and M. Mair (2011), Characteristics of upward bipolar lightning flashes observed at the Gaisberg Tower, J. Geophys. Res., 116, D13106, doi:10.1029/2011JD015634.
Zhou, H., G. Diendorfer, R. Thottappillil, H. Pichler, and M. Mair (2012), Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower, J. Geophys. Res., 117, D08102, doi:10.1029/ 2011JD017269.
Previous section: Lightning For Storm Chasers and Photographers