Archive for category Recoil Leaders

Thundersnow in Rapid City? Blame the Towers!

lg-130708-035552-Canon EOS 5D Mark IIrw

Unlike most lightning that initiates in the thunderstorm cloud as a bidirectional and bipolar leader that travels both upward and downward towards oppositely charged regions, upward lightning is unique in that it initiates from a tall object and the unidirectional leader only travels upward towards opposite polarity storm charge or a preceding triggering lightning flash component.  Lightning-triggered upward lightning (LTUL) is caused by a nearby triggering lightning flash which has one of its components (either leader activity or a return stroke) pass close enough to the tall object to cause a large and rapid electric field change which in turn initiates a self-propagating upward leader from the object.  Self-initiated upward lightning (SIUL) does not require a preceding nearby triggering lightning flash.  Instead, the electric field due to storm charge generation within the cloud reaches a point at which a self-propagating leader initiates spontaneously.  However, in this case the storm charge region is usually much lower and closer to the tall object and sometimes even envelopes the object. In both cases, the shape and height of the tower enhances the electric field locally near the tip so that ionization of the air and resulting leader formation takes place much easier than that over flat ground.  In essence, if the tall objects (i.e., towers, wind turbines or buildings) where not there, the upward lightning would not occur.

We have researched upward lightning in Rapid City since 2004, and our findings show that the 10 tall towers along the ridge that runs through the city all have experience upward lightning. During the summer, we only observed lightning-triggered upward lightning and during intense winter storms with heavy snow and strong winds, we only observed self-initiated upward lightning.  During the summer months from 2004 through 2014 we recorded recorded 122 upward flashes from the towers all of which were LTUL.

However, during the winter months, we only documented upward flashes during two major snow events.  The first and most intense was the devastating blizzard of 4 Oct 2013.  During a 21 hour period, the towers in Rapid City initiated 25 SIUL flashes.  In addition, the South Dakota Public Broadcasting tower near Faith, South Dakota experienced 17 SIUL flashes. Although we focus our research during the summer months, we just happened to have an electric field meter and digital interferometer operating during the blizzard.  The challenge with observing SIUL during heavy snow is that you cannot see the towers because they are obscured by the snow and low clouds.  So you have to record the lightning by some other means.  The electric field meter recorded the ambient electric field 5 km west of the towers, and the digital interferometer, 23 km east of the towers, mapped lightning leader activity in two dimensions (azimuth and elevation).  The interferometer recorded five upward flashes before it lost power along with most of western South Dakota.  Below is a video animation of the data recorded by the digital interferometer for one of the upward flashes.  You can visualize that you are standing east of Rapid City looking west toward the towers.  Each of the individual data points represents the azimuth and elevation to electromagnetic radiation generated by the lightning leader (and received by the sensor) as the leader propagated.  The system records data in sequential 4 microsecond windows and determines the direction to the strongest signal in each time window.  Since lightning tends to branch as it grows, you see the source points plot the spreading branched leaders as they grow.  The leader clearly initiates from a single point and then spreads upward as it branches.  Occasionally, you can see a rapid succession of source points that travel back along a branch toward the tower.  These are recoil leaders which form on decayed branches in an attempt to reionize the branch.

100413_114053-Editrw

And here is some video taken from my house during one of the upward flashes.

The only other time that we documented self-initiated upward lightning from the towers in Rapid City was during a strong snow event on Christmas Day 2016.  There were three confirmed upward flashes.

So if it is snowing really hard in Rapid City and you hear thunder, chances are you can blame the towers.

If you would like to learn more about lightning, please visit my Education section

Here are two scientific journal paper citations on the subject:

Warner, T. A., T. J. Lang, and W. A. Lyons (2014), Synoptic scale outbreak of self-initiated upward lightning (SIUL) from tall structures during the central U.S. blizzard of 1–2 February 2011, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021691.

Schultz, C. J., Lang, T. J., Bruning, E. C., Calhoun, K. M., Harkema, S., & Curtis, N. (2018). Characteristics of lightning within electrified snowfall events using lightning mapping arrays. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027821

, , ,

Leave a comment

Blinded by the Light

On May 13th, my daughter and I went out to chase storms that were forming over the Black Hills. A nice cluster of storms moved over Sturgis, South Dakota (home of the Sturgis Motorcycle Rally), and we filmed some close flashes as the storms passed over us. We then followed the cluster toward Bear Butte which is an isolated uplifted hill on the east side of the Black Hills, northeast of Sturgis.

Our primary target decayed and so we focused on new storms that had formed over the Black Hills and were moving directly toward us.  They put down some nice CGs, and as they reached us, I repositioned to have Bear Butte in my field of view.  A few minutes later we were treated to two spectacular CG lightning flashes directly in front of us and close.  They were very bright and very loud.  I suspected they were +CGs given their long duration continuing current and exceptional brightness.  The Black Hills area and Northern High Plains for that matter exhibits an atypically high percentage of +CG flashes, and trying to understand and explain this anomoly was part of a study I was involved in during the UPLIGHTS research campaign.

For the first flash, I had my infrared triggered cameras set to f/8 and ISO100 in aperture priority mode.  Although this setting is ideal for the average CG flash between 5-15 km, the LCD image review showed significant saturation.  I reset the aperture to f/11 and the second flash was still somewhat saturated.

Below is the image for the first flash. You will notice there is two CG channels, one in front of Bear Butte and one beyond.

lg-170417-233013-Canon EOS 6Dc

National Lightning Detection Data provided by Vaisala, Inc. indicated the closer CG was in fact positive (electrons traveled upward along the channel) with an impressive 159.6 kA estimated peak current.  It struck 2.5 km away.  NLDN data indicated the second channel was also a positive CG 12.6 km away and had an estimated peak current of 58.4 kA.

The second flash which is shown below only had one CG termination point.

lg-170417-233210-Canon EOS 6Dc.jpg

NLDN data indicated it was a +CG, 2.2 km away with a peak current of 143.1 kA.

Positive CG flashes tend to exhibit higher peak current compared to negative CGs on average and usually do not have multiple return strokes.  If my memory serves, I believe the latest published scientific literature has the average peak current for -CGs around 30 kA and 50 kA for +CGs.  So these flashes were exceptionally strong.  Unlike what we were taught in school, they DO NOT always originate from the top of a thunderstorm or anvil area and DO NOT always strike away from the main storm and rain area.  It all depends on where the charge regions form, and in the Northern High Plains, we see a lot of storms with inverted charge regions, which leads to more +CGs.  In the near future, I will be adding an education section on my blog which explains this in more detail.

Below is video of the two flashes captured on a Panasonic HPX-170 at 1280x720p60 which uses a global shutter (no annoying rolling shutter artifacts).  In the slow playback you will see an artifact on the frame preceding the return stroke.  This is saturating brightness bleed over from the subsequent return stroke that occurs in the following frame. After the CCD records a frame, the voltage values from each photosite (which corresponds to each pixel in the image) are shifted to an adjacent storage photosite that is covered. The voltage is then read out from the covered storage photosites while the next exposure is taking place in the non-covered photosites.  If the non-covered photosites experience a saturating brightness, some of the voltage can bleed over into the adjacent storage photosites during their readout adding a voltage increase to their recorded values.  Since the covered photosites are readout row by row with the data shifting up the CCD array to higher covered photosites after each row is read, the artifact will usually show up lower in the image as the “image data” from the previous frame has moved up when the saturating brightness occurs.  These artifacts are often misidentified as attempted leaders that occur close to the camera, when in fact they are only “ghost images” of the bright return stroke channel that occurs in the subsequent frame but shows up on the previous frame (forward in time…que Twilight Zone music.)

You will also notice the integrated recoil leader activity associated with descending positive leaders in the distant second CG during the first flash. This integrated recoil leader activity is a clear identifying characteristic of positive leaders, and I explain this in the previous post.

Below are some additional images from flashes we captured before the storm moved over Bear Butte.

, , , , ,

Leave a comment

Recoil Leaders in Lichtenberg Figure Formation??

Below is a video on the creation of Lichtenberg figures.  Interesting is the subsequent bright short discharges that continue to take place after the initial discharge.  These seem similar in appearance to recoil leaders, which form on positive leaders branches that become cutoff from a main channel.  Compare the two videos below.

YouTube video of Lichtenberg creation.

Upward lightning (upward positive leaders) from a tower filmed at 9,000 images per second.

, , ,

2 Comments

%d bloggers like this: