Posts Tagged lightning

Upward Lightning Lights Up The Bay Area, 4/12/12

On the night of 12 Apr 2012, the Bay Area of California experienced a storm that literally lit up the skies with upward lightning.  Some iconic photographs and video were taken during this event which provided evidence that numerous tall objects developed upward leaders in response to nearby flashes.  The foremost images that illustrated what happened that night were taken by Phil McGrew.  He had his Canon 5D Mark III camera running continuously using 20 sec exposures.  During two of these exposures, his camera captured upward leaders that developed from the Bay Bridge and additional structures on the east side of the Bay.  For each of the two photographs that he posted, it is likely that all the upward leaders developed during the same flash that probably lasted less than one second.  He was located in a tall building on the east side of San Francisco downtown looking east along the Bay Bridge.

Below are embedding links as provided by Phil’s Flickr page where he has posted two images.  Click on the images to go to his Flickr page.  The exif data on his Flickr page indicates that the first of the two images was taken at 8:38:29 pm PDT using ISO 100, f/10, 20 sec exposure and a 28 mm lens.  In this image there appears to be 5 upward leaders from the Bay Bridge structure and 2 upward leaders from two separate structures on the east side of the bay (likely in the Oakland area).

The (Other) Bay Bridge Lightning Strike.

Again based on the exif data, the second image that Phil captured was at 8:42:41 pm PDT (4 min and 12 sec later) and used the same camera settings.  This image (which has rightfully received international acclaim) appears to show 6 upward leaders from the Bay Bridge structure and 4 additional leaders beyond the Bay Bridge likely from structures on the east side of the bay.

Bay Bridge Lightning Strike!

Phil’s photographs indicate they were separated by 4 min and 12 sec.  Not know the time accuracy of Phil’s camera, we compared the indicated times and time difference between the two images with National Lightning Detection Network (NLDN)  data.  Based on previous research findings, we suspected that these upward leaders were triggered by positive ground flashes (+CG) within 50 km of the Bay Bridge.  Two very large estimated peak current +CG strokes were recorded at 3:39:59.425  and 3:44:12.332 pm PDT.  They had estimated peak currents of +129.8 kA and +270.7 kA respectively and were separated by 4 min and 12.907 sec.  There was a +27.8 kA stroke at 03:39:22.773 (37 min earlier of the first big +CG) and 2 -CG strokes at 03:40:32.843 and 03:42:21.957 fell within the time spaning the two large +CGs.

Below are GIS plots of the NLDN indicated return strokes and cloud events.  The first figure shows the event location, event type by symbol (see legend) and estimated peak current based on relative symbol size.  Notice the size of the +CG return stroke symbols relative to the other events.

Plot of NLDN recorded events. Size is relative to estimated peak current.

Plot of NLDN recorded events. Size is relative to estimated peak current.

The next figure shows the NLDN event locations and their times.

NLDN event locations and times.

NLDN event locations and times.

The last figure shows the NLDN events and a label of the estimated peak current.

NLDN event locations and estimated peak current labeled.

NLDN event locations and estimated peak current labeled.

We suspect that the upward leaders that developed from the Bay Bridge were positive polarity and developed following the large estimated peak current positive cloud-to-ground return strokes that occurred inside the Bay.  These are examples of lightning triggered upward lightning in which the field change resulting from a preceding flash causes the development of upward leaders from nearby tall objects.

There were a number of other images from other people that showed upward leaders from tall objects during this same night and the other locations included the Golden Gate Bridge and tall buildings in Oakland.  We suspect that these upward leaders also developed during the same triggering flashes that caused the upward leaders to develop from the Bay Bridge.

, , , ,

Leave a comment

A funny thing happened while filming lightning…

Over the past six years my research colleagues and I have filmed lightning using high-speed digital cameras.  In total we have captured 776 naturally occurring lightning flashes with recording speeds as high as 100,000 images per second.  158 of these flashes were cloud flashes in which some of the lightning leaders propagated outside of the clouds.  372 of theses flashes were negative cloud-to-ground flashes (-CG) and 206 were positive cloud-to-ground flashes (+CG).  41 of the flashes were upward flashes originating from tall towers in Rapid City.

During this last summer, we pursued a storm into the Badlands of South Dakota.  The Badlands are a beautiful area of erosion in the plains creating incredibly photogenic landscapes, and it is personally one of my favorite places to photograph lightning.  On this particular day, I was filming from the Pinnacles Overlook looking east across a road.  I filmed a number of flashes, but during one instance I not only captured a +CG flash, I also captured a rare wild tourist roaming the South Dakota plains.  Because I film from a highly modified truck with cameras and gadgets sticking out of it, he was a bit curious by the appearance of my vehicle.  However, he was clearly more interested in getting to the next viewpoint and quickly scurried off never to be seen again.  Here is the video…

,

Leave a comment

Recoil Leaders in Lichtenberg Figure Formation??

Below is a video on the creation of Lichtenberg figures.  Interesting is the subsequent bright short discharges that continue to take place after the initial discharge.  These seem similar in appearance to recoil leaders, which form on positive leaders branches that become cutoff from a main channel.  Compare the two videos below.

YouTube video of Lichtenberg creation.

Upward lightning (upward positive leaders) from a tower filmed at 9,000 images per second.

, , ,

2 Comments

What is it like to be struck by lightning while flying an airplane?

I had the incredible opportunity to fly the T-28 Storm Penetrating Aircraft that was funded for scientific research by the National Science Foundation and managed by the Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, in Rapid City, South Dakota.  I was one of three pilots who flew it before it was retired and one of nine total pilots to have flown this one-of-a-kind aircraft.  The aircraft was a 1949, T-28 Trojan highly modified to withstand hail up to 3 inches in diameter, severe turbulence, icing, and lightning.  It had armor plating on the leading edge of the wings and tail and had a bullet proof, lexan and metal reinforced canopy.  For over 30 years, the aircraft collected valuable data from inside thunderstorms and the analysis of these data helped to better understand thunderstorm theromodynamics, physics, and electrification as well as improve aviation safety.

Below are two pictures showing hail damage to non-reinforced portions of the aircraft.  The non-armored wing tip (left image) would have to be hammered out after each season and the instrument sensors would add to their battle scars each year (the gold dome in the right image is normally a smooth bowl about 6 in across).

 

We typically flew the aircraft through the heart of severe storms around the -10 C level (between 17,000 – 21,000 ft MSL) which is the harshest environment for ice formation on aircraft surfaces.  There was no deicing capability on the wings or tail, and occasionally, ice would build up on the wings to the point where the pilot could no longer hold altitude.  We would have to descend below the freezing level and let the ice melt off before going back into the storm.  Alternatively, hail would sometimes beat the ice off of the wings in a matter of seconds.

On a few occasions, the aircraft was flown through a storm that was producing a tornado.  Being 5 km above ground meant that we were in the broader circulation (mesocyclone) so we did not  (nor want to) encounter any tight circulations associated with tornadoes.

The aircraft would experience lightning strikes a few times each season, and the damage to the aircraft only involved a little metal being melted off the trailing edge of the wing flaps or tail at the two lightning attachment points.  Mazur [1989] showed that most lightning strikes to aircraft are initiated by the aircraft when it enhances the local electric field due to its shape.  Bipolar/bidirectional lightning leader development occurs at opposite ends of the aircraft and this development may result in a cloud flash or ground flash if one of the leaders connects with ground.  On average, each airliner experiences one lightning flash each year.  Current flows on the outside surface of the aircraft (typically aluminum) between the two attachment points.  The highly conductive aluminum allows the current to flow without significant heating, unlike the air where a hot lightning leader plasma forms due to its lack of conductivity.

In 2003, I was flying the T-28 when it initiated a lightning flash that attached to the propeller and rudder.  I had a standard definition video camera mounted on the dash that recorded the flash, and another video camera mounted on the wing recorded both the strike and my comments.  Below is the video from those cameras.

The strike definitely caught my attention as you can tell from the audio.  Inside the cockpit, it felt and sounded like someone slapped the canopy right next to my head.  There was no problems with the aircraft after the strike and upon landing we easily found the two attachment points.

If you are interested in seeing what a typical T-28 research mission was like, you can watch the video below.  Every time we flew into a storm, we would land with the reinforced conviction that a thunderstorm is no place for an airplane.  Thankfully, the T-28 was like no other airplane in the world.  As the chief pilot Charlie Summers frequently stated, “The airplane can get through the storm, you just have to stay with the airplane.”  These were reassuring words every time I approached a storm and saw a wall of boiling clouds filling my windscreen.

Mazur, V. (1989), A physical model of lightning initiation on aircraft in thunderstorms, J. Geophys. Res., 94(D3), 3326–3340.

, ,

3 Comments

CN Tower Experiences The Perfect Storm

On the night of 8/24/11, a leading-line/trailing stratiform mesoscale convective system developed and moved over Toronto, Canada.  The heart of the trailing stratiform region passed directly over the 553 m tall CN Tower and the people of Toronto were treated to an incredible light show as the tower unleashed at least 34 upward flashes over the span of an hour.  Wilke and Elizabeth See-Tho graciously provided me some video of the event and my analysis suggests that all of the upward flashes were triggered by preceding flash activity (lightning-triggered lightning) similar to what I observe in Rapid City, South Dakota.  For each case there was clearly in-cloud flash activity that preceded the upward leader initiation.  In addition, recoil leaders were visible in a large majority of the upward leaders suggesting they were positive polarity.

Below is a composite image where I stacked selected images from the See-Tho’s video.  As you can see, the CN Tower was literally ablaze with lightning leaders over the span of the storm.

Below is the edited video provided by the See-Tho’s.  This version plays in real time showing all 34 upward flashes and one spider lightning flash.

Below is the the same video sped up.

Below is video of each flash played at normal speed and in slow motion (total runtime 34 min).

Although I have not obtained nor analyzed lightning data for this storm, I suspect that a majority of the upward flashes were triggered by a preceding +CG flash within 50 km of the tower.  Horizontally extensive positive charge regions that form in the trailing stratiform regions of MCSs serve as potential wells for negative leaders that can travel upwards of 100 km.  This horizontally extensive negative leader development can take place during an intracloud flash and/or following a +CG return stroke.  The negative field change (atmospheric electricity sign convention) experienced at a tall tower by the approach of negative leaders or nearby +CG return stroke can initiate upward propagating positive leaders.  The conditions apparently were ideal for this triggering process and weather radar shows this was likely the case.

Below is a radar loop (base reflectivity, 0.5 degree tilt) of the storm development and passage over the CN Tower spanning from 00:02 – 03:41 UT, 8/25/11.  The See-Tho’s stated that the first upward flash was shortly after 02:00 UT.  This places the leading line convective region just east of the CN Tower with the tower in an area of decrease reflectivity between 30-40 dBz.  The tower would stay under this level of reflectivity (i.e., the trailing stratiform precipitation area) until 03:41 UT.  The last upward flash the See-Tho’s recorded was at approximately 03:06, but they thought there were a few more upward flashes that followed after they stopped filming.

This truly was a perfect storm to produce upward lightning flashes.  I suspect that many transient luminous events (TLEs) in the form of halos and/or sprites may have also been produced by the very same triggering flashes responsible for initiating the upward leaders.  The CN Tower is instrumented to measure current through the tower and there is an array of optical sensors including a high-speed camera within 3 km of the tower.  Hopefully, all the instrumentation was operational and an outstanding data set was captured.

, , , ,

3 Comments

%d bloggers like this: